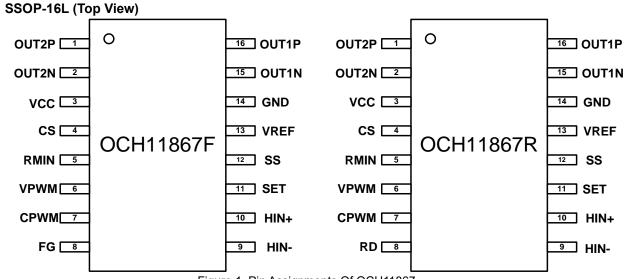


Single-phase Full-wave Pre-driver

General Description


OCH11867 is a single-phase bipolar driving motor predriver with the variable speed function compatible with external PWM signal. With a few external parts, a highlyefficient and highly-silent variable drive fan motor with low power consumption can be achieved. This product is best suited for driving of the server requiring large air flow and large current and the fan motor of consumer appliances.

Features

- Direct drive P/N MOSFET
- The speed can be adjusted and controlled externally
- Soft start, and the time can be set externally
- FG speed signal output (OCH11867F)
- RD signal output (OCH11867R)
- Under voltage protection
- Periodic overcurrent protection
- Locked rotor protection
- Over temperature protection
- Adopting encapsulated SSOP-16L

Application

- Industrial fans, server fans, welding machine fans
- Purifier fan, mining machine fan
- Sweeper fan、equipment fan
- Brushless DC fan

Pin Configuration

.

Single-phase Full-wave Pre-driver

Pin Description

Pin Number	Pin Name	Function					
1	OUT2P	Second channel P-type driver output open-drain output, must be connected with pull-up resistor to drive external power devices in operation					
2	OUT2N	Second channel N-type driver output push-pull output to drive external power devices					
3	VCC	Power supply					
4	CS	Current limiter indicator. Fixed to 0.2V internally. maximum allowable current is decided by external sample resistance. When the voltage of this pin exceeds 0.2V, the output will be shut down by current limit. If this function is not used, connect this pin to ground directly					
5	RMIN	Minimum speed setting terminal connect it to VREF when disused. In case it is tied to other power supply for controlling, an isolated resistor is necessary					
6	VPWM	Speed control terminal. It is full speed mode when connected to ground. If the speed is controlled by PWM mode, the frequency of control signal is 20kHz to 100kHz. moreover, a low pass network is necessary to transfer PWM to DC level					
7	CPWM	PWM basic oscillation frequency generator when connected with a capacitor of 220pF. 30kHz frequency is available					
8	FG/RD	"FG" means pin 8 is an output pin of FG signal which is used for detecting rotation speed. "RD" means pin 8 is an output pin of RD signal, and is use for detecting fan rotate-stop state. "FG" and "RD" can be selected according to the requirement. This pin need to be connected with pull-up resistor whe used. A new pulse will be generated once input signal changed. Keep this open when it is not to be used					
9	HIN-	Hall sensor negative input. To prevent noise, this pin is recommended to be placed as close as possible to Hall circuit. If necessary, a capacitor may be added between HIN+ and HIN- to reduce the influence caused by noise					
10	HIN+	Hall sensor positive input. To avoid noise, this pin is recommended to be placed as close as possible to Hall circuit					
11	SET	Lock protection and auto start frequency generator. It is connected with an external 0.47µF capacitor which decides lock-rotate time and start time. If lock-rotate protection function is disused, please connect this pin to GND					
12	SS	Linear start terminal. this pin is connected to VREF externally via a capacitor of 0.47μ F to 1μ F which enables fan start steadily. Start time is dependent to the capacitance. If linear start function is not used, connect this pin to ground					
13	VREF	5V voltage reference					
14	GND	Ground for circuit control					
15	OUT1N	First channel N-type driver output. push-pull output to drive external power devices					
16	OUT1P	First channel P-type driver output. open-drain output, must be connected with pull-up resistor to drive external power devices in operation					

00

•

OCH11867

Single-phase Full-wave Pre-driver

Typical Application Circuit

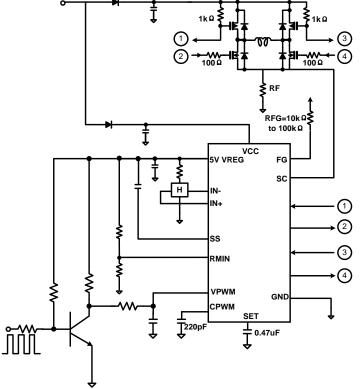


Figure 2, FG Signal Typical Application Circuit Of OCH11867F

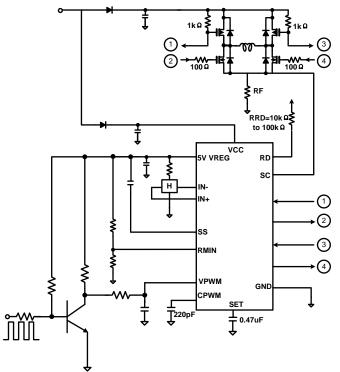


Figure 3, RD Signal Output Typical Application Circuit Of OCH11867R

OCH11867

Single-phase Full-wave Pre-driver

Ordering Information

Part Number	Output Signal	Package Type	Packing Qty.	Temperature	Eco Plan	Lead			
OCH11867FSAE	FG	SSOP-16L	3500pcs/Reel	-40 ~ +125°C	ROHS	Cu			
OCH11867RSAE	RD	SSOP-16L	3500pcs/Reel	-40 ~ +125°C	ROHS	Cu			

Block Diagram

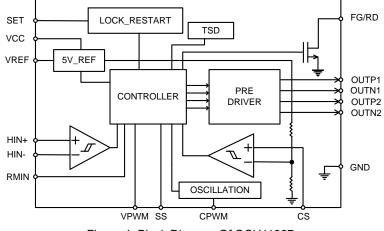
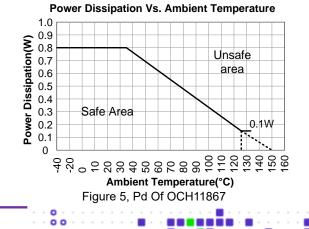



Figure 4, Block Diagram Of OCH11867

■ Absolute Maximum Ratings (Note1) (T_A=25°C, unless otherwise noted.)

Parameter	Symbol	Value	Unit
Supply Voltage	VCC	20	V
OUT1N/OUT2N Source Current	I _{OUTN}	20	mA
OUT1P/OUT2P Output Current	I _{OUTP}	20	mA
OUT1N/OUT2N Withstand Voltage	V _{OUTN}	20	V
OUT1P/OUT2P Withstand Voltage	V _{OUTP}	20	V
VREF/VPWM/VMIN Withstand Voltage	V _{REF} /V _{VPWM} /V _{VMIN}	7	V
CPWM/SET/SS Withstand Voltage	V _{CPWM} /V _{SET} /V _{ss}	7	V
FG/RD Withstand Voltage	V_{FG}/V_{RD}	VCC	V
FG/RD Output Current	I _{FG} /I _{RD}	10	mA
VREF Output Current	I _{REF}	20	mA
Power Dissipation	P _D	800	mW
Storage Temperature Range	Τ _{stg}	-55 to150	°C
ESD (Human Body Model)	ESD	2000	V

OCH11867

Single-phase Full-wave Pre-driver

Recommended Operating Conditions (Note2)

Parameter	Symbol	Rating	Unit
VCC Pin Voltage to GND	VCC	5 to 16	V
Operating junction Temperature Range	TOP	-40 to +125	°C

Note 1: Stresses above those listed in absolute maximum ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one absolute maximum rating should be applied at any one time.

Note 2: The device is not guaranteed to function outside of its operating conditions.

0

0 0

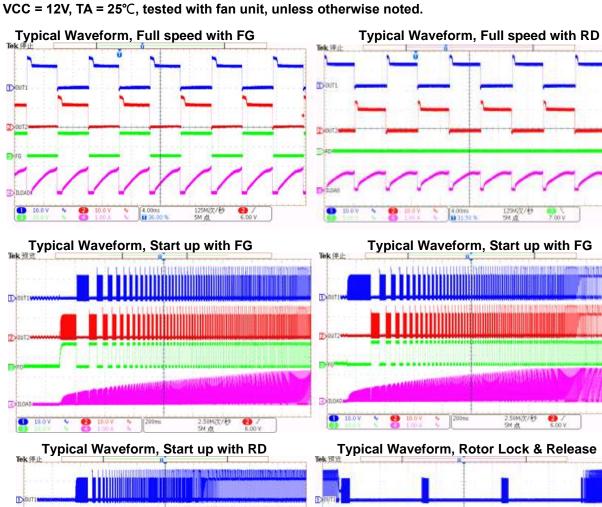
÷

Single-phase Full-wave Pre-driver

Electrical Characteristics (VCC=12V, TA =25°C unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Quiescent Qurrent	I _{Q1}	Rotation Mode & Lock Mode	-	9.6	12	mA
Quiescent Current	I _{Q2}	Shutdown Mode	-	9.6	12	IIIA
VREF Reference Voltage	VREF	I _{OUT} =5mA	4.6	5.0	5.5	V
VPWM High Level Voltage	Vvpwmh		-	3.4	-	V
VPWM Low Level Voltage	VVPWML		-	1.1	-	V
Current Limit Voltage	V _{LIM}		-	200	-	mV
CPWM Frequency	FCPWM	С _{СРWM} =220рF	25.5	30	35.5	kHz
Soft Start Charge Current	lss	Vss=1V	-	0.5	0.7	μA
SET High Level Voltage	VSETH		2.4	3.3	3.6	V
SET Low Level Voltage	V _{SETL}		1.0	1.3	1.6	V
SET Charge Current	Існд	V _{SET} = 0.5V	1.5	2	2.5	μA
SET Discharge Current	Іднд	V _{SET} = 3.5V	0.13	0.2	0.25	μA
SET Charge and Discharge Ratio	Rcd	Існд/Іднд	8.5	10	14.5	-
OUTN High Level Voltage	V _{ONH}	І _{ОUT} = 10mA	VCC-1.8	VCC-0.85	VCC	V
OUTN Low Level Voltage	Vonl	Iouт = 10mA	-	0.9	1	V
OUTP Low Level Voltage	Vopl	Iouт = 10mA	-	0.5	0.65	V
Signal Hall Input Sensitivity	V _{HN}	I _{HIN+} , I _{HIN-} difference voltage (include offset and hysteresis)	-	±10	-	mV
FG/RD Saturation Voltage	Vsat	I _{SINK} = 5mA	-	200	500	mV
FG/RD Leakage Current	IFGL	V _{FG} = VCC	-	-	1	μA
Over Thermal Protection Temperature	T _{OTP}		-	170	-	°C
Over Thermal Protection Hysteresis	T _{HY}		-	30	-	°C

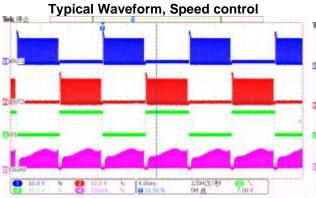
■ Truth Table


HIN-	HIN+	OUT1P	OUT1N	OUT2P	OUT2N	FG	RD	Mode	
Н	L	L	L	OFF	Н	L	L	OUT1→OUT2 (Driver)	
L	Н	OFF	Н	L	L	Н	L	OUT2→OUT1 (Driver)	
н	L	OFF	L	OFF	Н	OFF	Н	Look Protection	
L	Н	OFF	Н	OFF	L	OFF	Н	Lock Protection	

OCH11867

Single-phase Full-wave Pre-driver

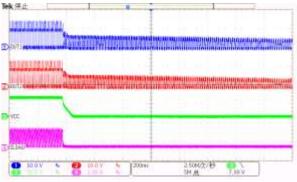
125%。 94 点


li õ

L 灿瑞科技 ORIENT-CHIP

Typical Performance Characteristics

2.50M次/秒 54点 6.00 Y **Typical Waveform, Rotor Lock & Release**


1.25M次/秒 5M点

0 0 0 0

Typical Waveform, Shutdown

35年次/10 9月月

7.00 V

2

Dn

OCH11867

Single-phase Full-wave Pre-driver

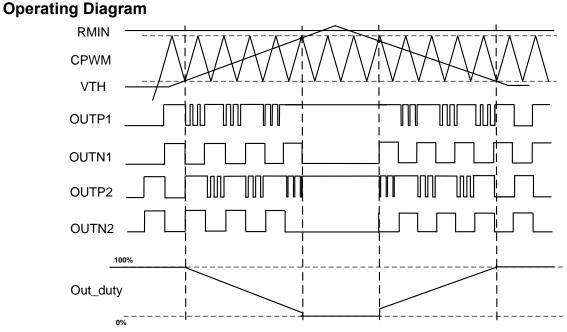


Figure 6, Operating Diagram Of OCH11867

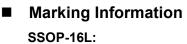
1. Low speed \Leftrightarrow high speed

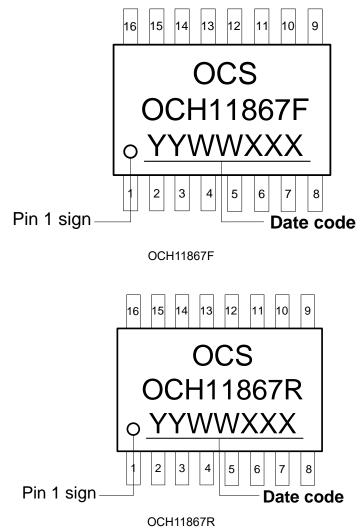
PMW control is made by comparing the CPWM oscillation voltage $(1.1V \Leftrightarrow 3.4V)$ and VTH voltage. Both upper and lower output TRs are turned ON when the VTH voltage is low. The upper output TR is turned OFF when the VTH voltage is high, regenerating the coil current in the lower TR. Therefore, as the VTH voltage increases, the output ON-DUTY decreases, causing decrease in the coil current, reducing the motor rotation speed.

2. Minimum speed setting (stop) mode

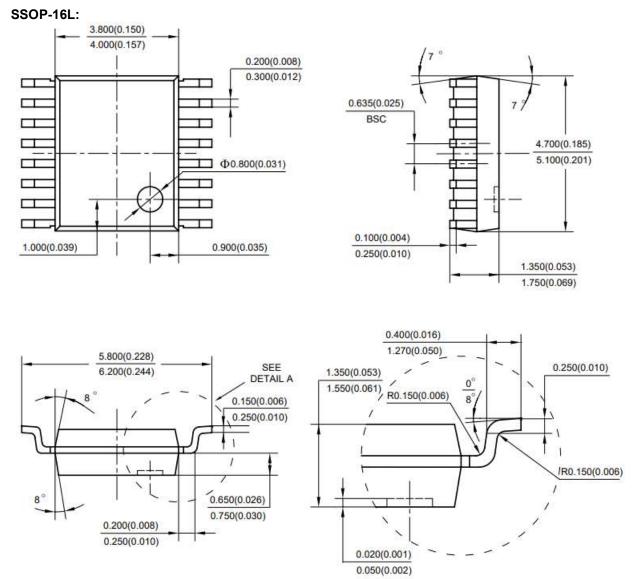
ORIENT-CHIP

The low-speed fan rotation occurs at the minimum speed set with the RMI pin. When the minimum speed is not set (RMI pin pulled up to 5VREG), the motor stops.


3. Full speed mode


The full speed mode becomes effective when the VTH voltage is 1.1V or less. (Set VTH = GND when the speed control is not to be made.)

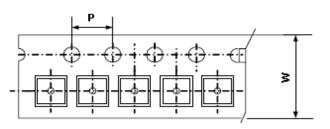
Single-phase Full-wave Pre-driver

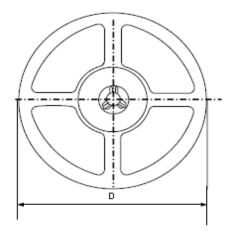

0 ·

Single-phase Full-wave Pre-driver

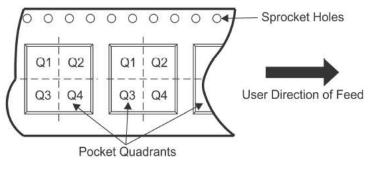
Package Information

0




OCH11867

Single-phase Full-wave Pre-driver


Packing Information

SSOP-16L:

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Package Type	Carrier Width (W)	Pitch (P)	Reel Size(D)	Packing Minimum	PIN1 Quadrant
SSOP-16L	12.0±0.1 mm	4.0±0.1 mm	330±1 mm	3500pcs	Q1

Note: Carrier Tape Dimension, Reel Size and Packing Minimum

Single-phase Full-wave Pre-driver

IMPORTANT NOTICE

Shanghai Orient-Chip Technology Co., Ltd. (OCS) and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements and other changes to its products. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. These separate provisions won't be provided.

