

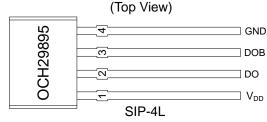
OCH29895

Single Phase Hall-Effect DC Fan Driver

General Description

The OCH29895 is an integrated Hall sensor with H-Bridged output driver designed for brushless DC motor applications .The device is using high voltage BCD process includes an on-chip Hall sensor for magnetic sensing, an amplifier that amplifies the Hall voltage, a comparator to provide switching hysteresis for noise rejection, a bi-directional drivers for sinking and driving large current load. OCH29895 built-in power supply reverse connection protection circuit enables the OCH29895 do no need for external reverse diode in application, can reducing the fan cost.

OCH29895 is available in SIP-4L package and is rated over the -40°C to 125°C.


Features

- Built-in VCC to GND reverse voltage protection
- Low Output Switching Current Noise
- One-chip Solution(Hall Element+Driver)
- Input Voltage Range:3.5V to 30V
 High Sensitivity Hall Sensor
- BOP (20GS), BRP (-20GS)
- Thermal Shutdown Protection
- Lock-shutdown Protection & Auto-Restart Function
- R_{DS(ON)} :1.65Ω
- RoHS Compliant
- Available in SIP-4L(TO94) package

Applications

- Single Coil Design Cooling Fan
- Single Coil DC Brushless Motor

Pin Configuration

Pin Name	Pin No.	Pin Function
V _{DD}	1	Positive Power Supply
DO	2	Output 1
DOB	3	Output 2
GND	4	Ground

Typical Application Circuit

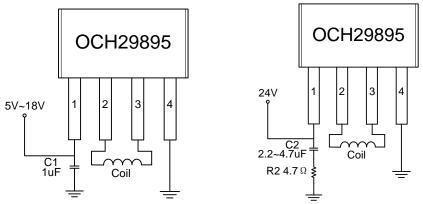
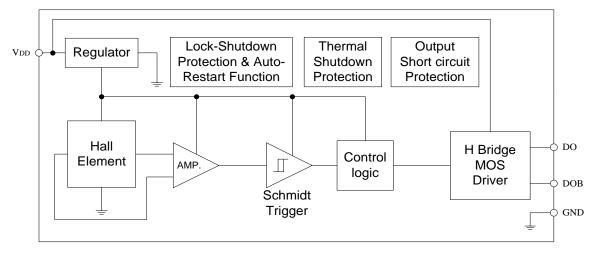


Figure 2, Typical Application Circuit Of OCH29895

Note1 : When the power pulse is relatively large , Must use least C1=1µF ceramic capacitor or C2=2.2~4.7uF electrolytic capacitor for the decoupling between V_{DD} and GND and place the capacitor as close to the IC as Possible.


OCH29895

Single Phase Hall-Effect DC Fan Driver

Ordering Information

••••••••••••••••••••••••••••••••••••••								
Part Number	Output Current	Package Type	Packing Qty.	B _{OP} (Gauss)	B _{RP} (Gauss)	Temperature	Eco Plan	Lead
OCH29895ME-D	500mA	SIP-4L	1000pcs /Bag	20(Typ.)	-20(Typ.)	-40 ~ 125°C	ROHS	Cu

Block Diagram

Figure 3, Block Diagram Of OCH29895

■ Absolute Maximum Ratings(T_A=25°C, unless otherwise noted)

0 0

Parameter	Symbol	Rating	Unit
VDD Pin to GND	Vdd	-27 to +32	V
Continuous Output Current	I _{O(CONT)}	500	mA
Hold Output Current	IO(HOLD)	1000	mA
Peak Output Current	I _{O(PEAK)}	1500	mA
Maximum Power Dissipation	PD	860	mW
Thermal Resistance	θја	157	°C /W
Junction temperature	TJ	160	°C
Storage Temperature Range	Ts	-55 to +150	°C
Maximum Soldering Temperature(at leads,10 sec)	TLEAD	260	°C

Note2:The maximum dissipation power PD allowed at any ambient temperature point is calculated: PD (max) = (T J - TA) / θ JA , TJ=160°C \circ When applied, do not exceed the maximum rating to prevent chip damage, and work for a long time at maximum rating may affect chip reliability.

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
V _{DD} Pin to GND	Vdd	3.5 to 30	V
Operating Temperature Range		-40 to +125	°C

Note3 : In practical application, the effect of fan coil heating on the chip must take into account, with the actual over temperature protection point of actual test of high temperature fan for reference. On the basis of pre leave relatively safe temperature allowance, avoid chip in the critical limit (maximum ratings) for a long time and affects the reliability.

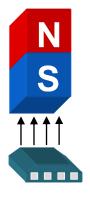
OCH29895

Single Phase Hall-Effect DC Fan Driver

Electrical Characteristics

Typical values are at $T_A=+25^{\circ}C$, $V_{DD}=24V$, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Supply						
Vdd	Input Voltage	-	3.5	-	30	V
DD	Supply Current	No load	-	2.5	5	mA
Output						
R _{DS(ON)}	Output On-Resistance	Io=0.3A	-	1.65	-	Ω
Protection						
Ton	Locked Protection On Time	-	-	0.4	-	Sec
TOFF	Locked Protection Off Time	-	-	2.4	-	Sec
Rduty	Locked Protection Duty Ratio	TOFF/TON		6		-
T _{SD}	Thermal Shutdown Temperature	-	150	160	-	°C
Тѕн	Thermal Shutdown Hysteresis	-	-	30	-	°C

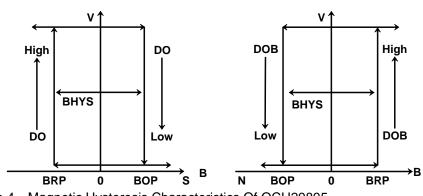

Magnetic Characteristics

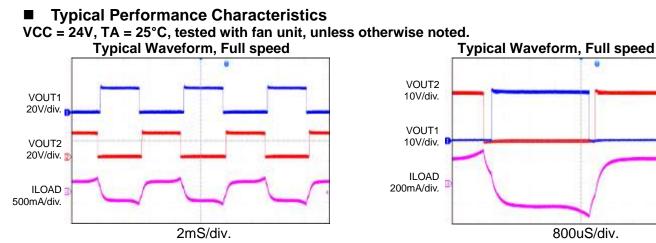
Typical values are at $T_A=+25^{\circ}C$, $V_{DD}=12V$, unless otherwise noted.

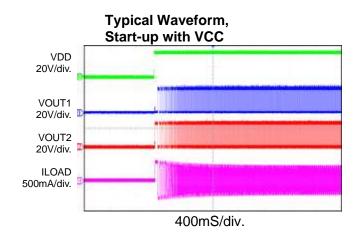
Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating Point	BOP	5	20	45	Gauss
Release Point	BRP	-45	-20	-5	Gauss
Hysteresis	BHYS	-	40	-	Gauss

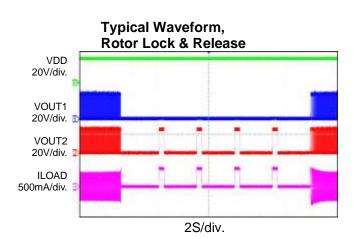
■ Driver Output Vs. Magnetic Pole

Parameter	Test Conditions	DO	DOB
South Pole	B > BOP	Low	High
North Pole	B < BRP	High	Low

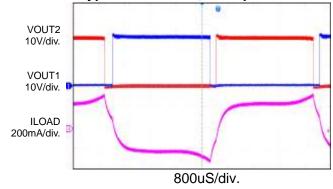


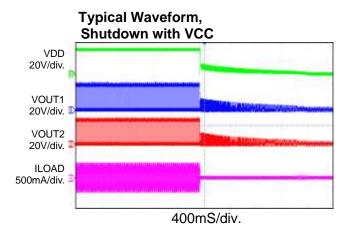

Figure 4 , Magnetic Hysteresis Characteristics Of OCH29895


0



OCH29895


Single Phase Hall-Effect DC Fan Driver



0

Single Phase Hall-Effect DC Fan Driver

Function Description

Output Switch Principle

The OCH29895 built in a Hall-effect sensor plane to sense the vertical magnetic flux density (B). There are two output drivers in OCH29895 to drive Single-phase DC brushless fan or motor. When the South Pole magnetic field is close to the IC marking surface and the magnetic flux density higher than operate point (Bop), the DO pin output will turned to drive (Low) and the DOB pin output will turned to sink (High). When the South pole magnetic field far away the IC marking surface and North pole magnetic field close to the IC marking surface until the magnetic flux density higher than release point (Brp), the DO pin output will turned to sink (High) and the DOB pin output will turned to drive (low).

Rotor Lock and Restart Protection

The OCH29895 built in a rotor lock and restart protection, if the IC cannot detect the Hall sensor signal change during the detection Ton time, all MOSFETs of the H-bridge are turned off. After Toff recovery time, the IC attempts to start up again automatically.

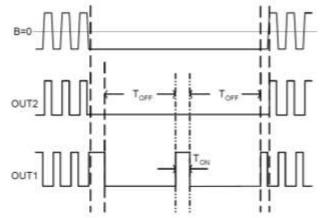
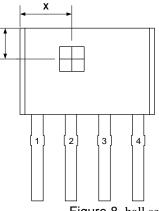


Figure 5, OCH29895 Rotor Lock and restart protection

Thermal Protection

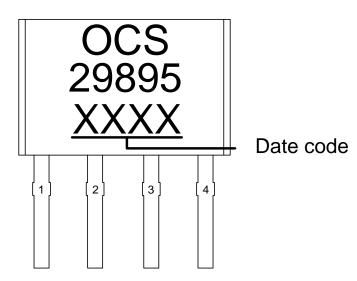
The OCH29895 has a thermal protection. When the internal junction temperature reaches $160^{\circ}C$ (Typ.),the output devices will be switched off. When the IC's junction temperature cools by $30^{\circ}C$, the thermal sensor will turn the output devices on again, resulting in a pulsed output during continuous thermal protection.



OCH29895

Single Phase Hall-Effect DC Fan Driver

Hall Sensor Location

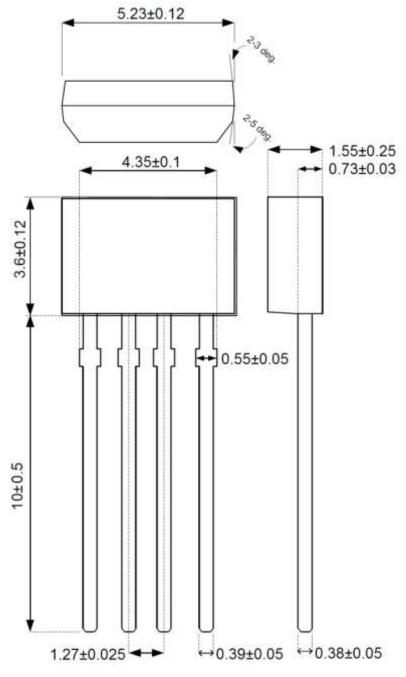


Orientation	Value	Unit
x	1.9	mm
Y	1.2	mm

Figure 8, hall sensor location, where marks the IC number.

Marking Information

(1) SIP-4L


OCH29895

S 加瑞科技

Single Phase Hall-Effect DC Fan Driver

Package Information

(1) SIP-4L (Unit: mm)

Packing Information Packing type: Bag

- 2. Packing minimum: 1000pcs/Bag

1

OCH29895

Single Phase Hall-Effect DC Fan Driver

IMPORTANT NOTICE

Orient-Chip Semiconductor Co., Ltd. (OCS) and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements and other changes to its products. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. These separate provisions won't be provided.

