

Low On-Resistance Load Switch with Controlled Slew Rate

General Description

The OCP9211 features a low-Ron internal FET and an operating range of 1.2V to 5.5V. The switch is controlled by an on/off input which is compatible with standard CMOS GPIO. The low shut-off current allows power designs to meet standby and off-power drain specifications. On-chip discharge resistance is integrated for quick output discharge when switch is turned off. Slew-rate control prevents inrush current during switch turn-on.

The OCP9211 is available in a fully "green" compliant 0.87mm * 0.87mm WLCSP-4B Package.

Features

- Supply Voltage Range: 1.2V to 5.5V
- Typical Ron:
 - Ron=37m Ω at VIN=5.5V
 - Ron= $47m\Omega$ at VIN=3.3V
 - Ron=80mΩ at VIN=1.8V
 - Ron= $105m\Omega$ at VIN=1.5V
 - Ron=185m Ω at VIN=1.2V
- Slew Rate Control
- Low Quiescent Current
- Integrated Discharge Function
- 4-Bump, WLCSP 0.87 mm x 0.87 mm, 0.5mm Pitch

■ Applications

- Portable Media Players
- Cell Phones or Smart Phones
- PDAs
- Mobile Handsets
- Tablet PCs and Laptops/Net books

■ Pin Configuration

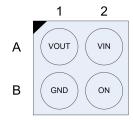


Figure 1, Pin Assignments of OCP9211 (Top View)

Pin Name	Pin No.	Pin Function		
VOUT	A1	Switch output		
VIN	A2	Switch input		
GND	B1	Ground		
ON	B2	ON/OFF Control, active HIGH		

■ Typical Application Circuit

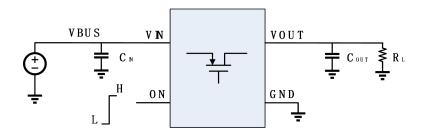


Figure 2 Typical Application of OCP9211

■ Block Diagram

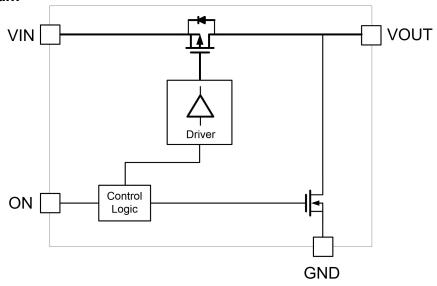


Figure 3, Block Diagram of OCP9211

Ordering Information

Part Number	Part Number Package Type		art Number Package Type Markin		Package Qty	Temperature	Eco Plan	Lead Finish
OCP9211WPAD	WLCSP-4	L	7-in reel 3000pcs/reel	-40∼85℃	Green	Cu/Ag/Sn		

■ **Absolute Maximum Ratings**¹ (T_A=25°C, unless otherwise noted)

Parameter	Symbol	Rating	Unit
VIN Pin to GND	V _{IN}	-0.3 to +6	V
VOUT Pin to GND	V _{OUT}	-0.3 to +6	V
ON Pin to GND	Von	-0.3 to +6	V
Maximum Continuous Switch Current at Ambient	Isw	2	Α
Operating Temperature	1500		
Human Body Model (HBM)	ESD	4	kV
Charged Device Model (CDM)	ESD	2	KV
Storage Temperature Range	Ts	-55 to +150	°C
Operating Junction Temperature Range	TJ	-40 to +150	°C

■ Recommended Operating Conditions²

Parameter	Symbol	Rating	Unit
V _{IN} Pin Voltage to GND	V _{IN}	+1.2 to +5.5	V
Thermal Resistance	R _{0JA}	110	°C/W
Operating Temperature Range	T _{OP}	-40 to +85	℃

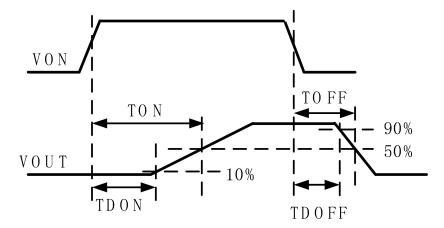
Note1: Stresses above those listed in absolute maximum ratings may cause permanent damage to the device. Functional operation at these conditions or other operating conditions exceeding those specified is not implied. Only one absolute maximum rating should be applied at any one time.

Note2: The device is not guaranteed to function outside of its operating conditions.

■ Electrical Characteristics

(Unless otherwise noted, T_A =-40 $^{\circ}$ C to +85 $^{\circ}$ C and V_{IN} =1.2V to 5.5V. Typical values are at T_A =25 $^{\circ}$ C, V_{IN} =3.3V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
Basic Operation									
IQ	Quiescent Current	V _{ON} =5.5V, V _{IN} =5.5V, I _{OUT} =0mA		0.1	1.5	μΑ			
I _{SD}	Off Supply Current	V _{ON} =0V, V _{IN} =5.5V, V _{OUT} =0V		0.1	1.0	μΑ			
I _{Q(OFF)}	Shutdown Current	V _{ON} =0V, V _{IN} =5.5V, V _{OUT} =Open		0.1	1.0	μΑ			
Ion	On Input Leakage Current	V _{ON} =V _{IN} or 0V			2.0	μΑ			
		V _{IN} =5.5V, I _{OUT} =200mA, T _A =25℃		37	55 ³	mΩ			
D	Switch On Resistance	V_{IN} =3.3V, I_{OUT} =200mA, T_A =25 $^{\circ}$ C		47	65³				
R _{on}	Switch On Resistance	V_{IN} =1.8V, I_{OUT} =200mA, T_A =25 $^{\circ}$ C		80	100 ³				
		V _{IN} =1.5V, I _{OUT} =200mA, T _A =25℃		105	150³				



		V _{IN} =1.2V, I _{OUT} =200mA, T _A =25℃		185	220 ³	
R _{PD}	Output Discharge Resistance	V_{IN} =3.3V, I_{OUT} =20mA, V_{OUT} =OFF, T_{A} =25°C		130		Ω
V_{IH}	ON input high level	/EN Rising	1.15			V
VIL	ON input low level	/EN Falling			0.65	V
R _{ON_PD}	Pull Down Resistance at ON Pin			5.3		М
iming Cha	aracteristics					
T _{DON}	Switch Turn-on Delay Time			86		μs
T _R	V _{OUT} Rise Time	V_{IN} =3.3V, R _L =10Ω, C _L =0.1μF, T_A =25°C		130		μs
T _{ON}	Switch Turn-on Time			216		με
_	Switch Turn off Doloy Time4	V_{IN} =3.3 V , R_L =10 Ω , C_L =0.1 μ F, T_A =25 $^{\circ}$ C		8.6		μs
T_{DOFF}	Switch Turn-off Delay Time ⁴	V_{IN} =3.3V, R_{L} =500 Ω , C_{L} =0.1 μ F, T_{A} =25 $^{\circ}$ C		9.8		
т	V Fall Time4	V_{IN} =3.3 V , R_L =10 Ω , C_L =0.1 μ F, T_A =25 $^{\circ}$ C		2.5		μs
T_{F}	V _{OUT} Fall Time ⁴	V_{IN} =3.3 V , R_L =500 Ω , C_L =0. 1 μ F, T_A =25 $^{\circ}$ C		27		
т	Cuitab Turn off Time A	V_{IN} =3.3 V , R_L =10 Ω , C_L =0.1 μ F, T_A =25 $^{\circ}$ C		11		- µs
T_{OFF}	Switch Turn-off Time ⁴	V_{IN} =3.3 V , R_L =500 Ω , C_L =0.1 μ F, T_A =25 $^{\circ}$ C		36		

■ Timing Diagrams

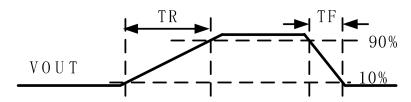
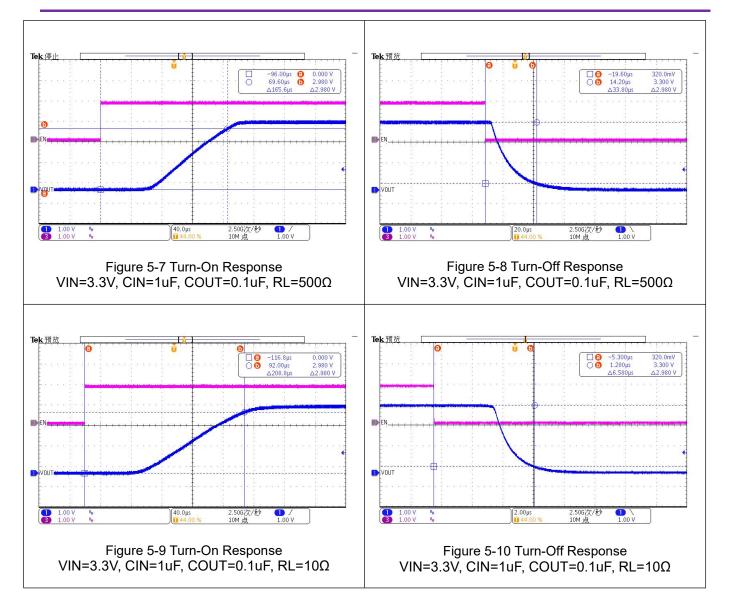


Figure 4, Timing Diagram


■ Typical Performance Characteristics (C_{IN}=1µF, C_{OUT}=0.1µF, unless otherwise specified.)

0 0

■ Detailed Functional Description

Device Operation

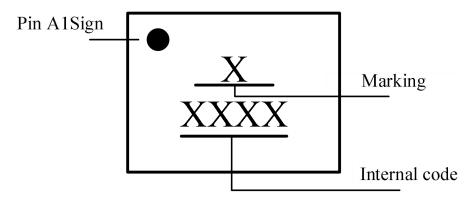
The OCP9211 is low-R_{ON} P-channel load switch in 4-pin WLCSP package. The slew urn-on control is integrated to limited inrush current. The device is designed to have very low leakage current during off state for low power-saving system.

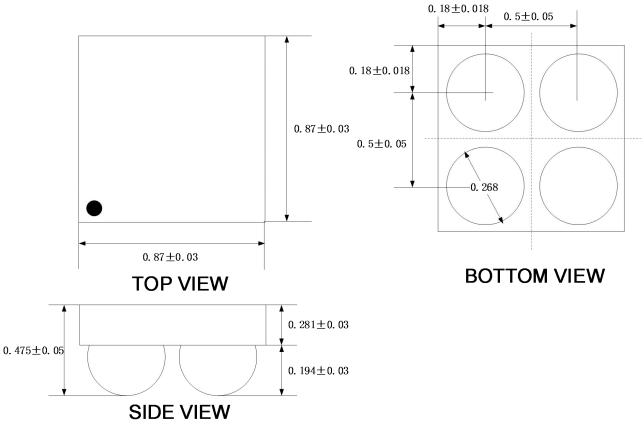
Input Capacitor

To limit the voltage-drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between V_{IN} and GND. A 1 μ F ceramic capacitor, C_{IN} , placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high current applications. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.

Output Capacitor

Due to the integrated body diode in the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} .

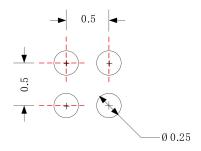




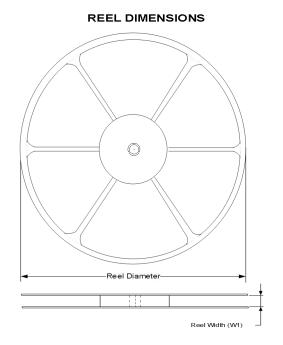
■ Marking Information

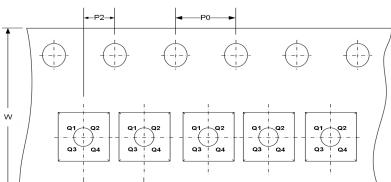
WLCSP-4B

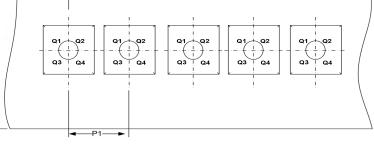
■ Package Information



NOTE: ALL dimensions are in millimeters




Recommended Land Pattern


Recommended Land Pattern

Packing Information

TAPE DIMENSIONS

DIRECTION OF FEED

Package type	SPQ (PCS)	Reel Diameter (mm)	Reel Width W1(mm)	W (mm)	P0 (mm)	P1 (mm)	P2 (mm)	MSL	PIN A1 Quadrant
4-Ball WLCSP (WLCSP-4B)	3000	180	8.6	8.0	4.0	4.0	2.0	Level-1-260°C	Q1

OCP9211

IMPORTANT NOTICE

Orient-Chip Semiconductor Co., Ltd (OCS) and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete .These separate provision won't be provided.