

OCP9225

Over-Voltage and Surge Protection Load Switch

General Description

The OCP9225 features a low-Ron internal FET and an operating range of $3V_{DC}$ to $28V_{DC}$. An internal clamp is capable of shunting surge voltages ±100V, protecting downstream components and enhancing system robustness. The OCP9225 features over-voltage protection that powers down the internal FET if the input voltage exceeds the OVP threshold. The OVP threshold is adjustable with optional external resistors. Over-temperature protection also powers down the device at 140 °C (typical).

The OCP9225 is available in a fully "green" compliant 1.237mm * 1.912mm WLCSP-12B Package.

Features

- Surge Protection
 -IEC 61000-4-5: ±100V
- Over-Voltage Protection (OVP)
- Over-Temperature Protection (OTP)
- Absolute Maximum Input Voltage: 35V
- Low Ron Switch : 18mΩ
- Default OVP threshold
 OCP9225A :6.8V
 OCP9225B :10.2V
 - External OVLO threshold : 1.2V

Applications

- Portable Media Players
- Cell Phones or Smart Phones
- PDAs
- Mobile Handsets
- Tablet PCs and Laptops/Net books

Pin Configuration

WLCSP-12B(Top View):

Pin Name	Pin No.	Pin Function			
OUT	A2 A3 B2	Switch output to Load			
IN	B3 C2 C3	Switch input and Device supply			
OVLO	C1	Over-Voltage Lockout Adjustment Pin			
GND	A4 B4 C4	Ground			
/EN	A1	Enable pin, active low			
/ACOK	B1	Power flag, active-low, open-drain output. When VIN_UVLO <vin<vin_ovlo, acok="" hi-z="" is="" it's="" low,="" otherwise="" pulled="" state<="" td=""></vin<vin_ovlo,>			

Over-Voltage and Surge Protection Load Switch

Typical Application Circuit

- 1. If V_{IN} is required to pass surge voltage greater than 100V, external TVS is needed, the maximum clamping voltage of the TVS should be below 35V.
- 2. When the default OVP threshold is used, connect OVLO pin to GND directly or through a 0Ω resistor. OVLO pin cannot be left floating.
- 3. If R1 and R2 are used to adjust the OVP threshold, it is better to use 1% precision resistors to improve the OVP threshold precision.
- 4. If /ACOK is not used, it can be left floating, or short to GND.
- 5. C_{IN}=0.1µF is recommended for typical application, larger C_{IN} is also acceptable. The rate voltage of C_{IN} should be larger than the TVS maximum clamping voltage, if no TVS is applied and only OCP9225 is used, the rated voltage of C_{IN} should be 50V.
- 6. C_{OUT}=1µF is recommended for typical application, larger C_{OUT} is also acceptable. The rated voltage of C_{OUT} should be larger than the OVP threshold. For example, if the OVP threshold is 6.8V, the rated voltage of C_{OUT} should be 10V or higher, if the OVP threshold is 10.2V, the rated voltage of C_{OUT} should be 16V or higher.

Block Diagram

Figure 3, Block Diagram of OCP9225

Over-Voltage and Surge Protection Load Switch

Absolute Maximum Ratings¹ (TA=25°C, unless otherwise noted)

Parameter	Symbol	Rating	Unit		
V _{IN} Pin to GND	V _{IN}	-0.3 to +35	V		
Vout Pins to GND	Vout	-0.3 to V _{IN} + 0.3	V		
VovLo Pins to GND	Vovlo	-0.3 to 6	V		
V/ACOK Pins to GND	V/ACOK	-0.3 to 6	V		
V/EN Pins to GND	V/EN	-0.3 to 6	V		
Maximum Continuous Current of Switch IN-OUT ²	I _{SW}	6	A		
Maximum Peak Current ³	IPEAK	9	A		
Storage Temperature Range	Ts	-55 to +150	°C		
Operating Junction Temperature Range	TJ	-40 to +150	°C		
Maximum Soldering Temperature (at leads, 10 sec)		260	°C		

Note 1: Stresses above those listed in absolute maximum ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one absolute maximum rating should be applied at any one time.

Note 2: Limited by thermal design.

Note 3: Maximum 10ms pulse width.

Recommended Operating Conditions⁴

Parameter	Symbol	Rating	Unit
V _{IN} Pin Voltage to GND	V _{IN}	+3 to +28	V
Thermal Resistance	Reja	88	°C/W
Operating Temperature Range	T _{OP}	-40 to +85	°C

Note 4: The device is not guaranteed to function outside of its operating conditions.

00

Electrical Characteristics

(unless otherwise noted, Typical values are at T_A= 25 $^\circ$ C,V_IN=5.0V, C_IN=0.1µF, C_OUT=1µF)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
Basic Operation								
		OCP9225A: $V_{IN} = 5V$, $V_{OVLO}=0V$, I _{OUT} =0A	-	110		μA		
IQ	input Quienscent Current	OCP9225B: V _{IN} =9V, V _{OVLO} =0V, I _{OUT} =0A		180				
	Input current at over-votage	OCP9225A: V _{IN} = 5V, V _{OVLO} =3V, I _{OUT} =0A		50	70	μA		
IIN OVP	condition	OCP9225B: V _{IN} = 9V, V _{OVLO} =3V, I _{OUT} =0A		80	100			
Ron	Switch On Resistance	$V_{\text{IN}} = 5V, \ I_{\text{OUT}} = 1A, \ T_{\text{A}} = 25^{\circ}\!\!\!\!\!^{\circ}\!\!\!\!^{\circ}\!\!\!\!^{\circ}\!\!\!\!^{\circ}\!\!\!\!^{\circ}\!\!$	-	18	25	mΩ		
V _{IN_OVP}	VIN OVP Trip Level	OCP9225A V _{IN} Rising	6.66	6.8	6.94	V		
		OCP9225B V _{IN} Rising	9.99	10.2	10.4	V		
VIN_OVP_HYS	VIN OVP Hysteresis	VIN OVP Hysteresis VIN Falling Hysteresis		0.3	-	V		
V _{IN_UVLO}		V _{IN} Rising	-	2.7	-	V		
		VIN Falling Hysteresis	-	0.1	-	V		
V _{ovlo_th}	OVLO set threshold		1.16	1.2	1.24	V		
	Hys			0.05	-	V		

OCP9225

Over-Voltage and Surge Protection Load Switch

Vovlo_sel	External OVLO select threshold	Vovlo Rising	0.19	0.27	0.33	V		
	Hys		-	0.1	-	V		
I _{OVLO}	OVLO pin leakage current	Vovlo=Vovlo th	-0.2	-	0.2	μA		
I _{LEAK} /ACOK	ACOK leakage current	Vio=5V	-0.5	-	0.5	μA		
V _{OL}	ACOK output low voltage	Isink=1mA	-	-	0.4	V		
VIH	/EN input high level	/EN Rising	1.2	-	-	V		
VIL	/EN input low level	/EN Falling	-	-	0.5	V		
Timing Char	Timing Characteristics							
Тдев	Debounce Time	Time from Vin> V_{IN_UVLO} to OUT = 0.1*V _{OUT}	-	13	-	ms		
Ton	Switch Turn-on Time	OUT from 0.1 * V_{IN} to 0.9 * V_{IN} CLOAD = 1µF	-	900	-	μs		
TOFF	Switch Turn-off Time	$C_{LOAD} = 1\mu F$, $V_{IN} > V_{IN OVLO}$ to V_{OUT} stop rising	-	50	-	ns		
T _{START}	Start time	From VIN>VIN UVLO to /ACOK		25		ms		
Thermal Shutdown								
T _{SDN}	Thermal Shutdown			140		°C		
T _{SDN_HYS}	Thermal Shutdown Hysteresis			35		°C		

Timing Diagrams

Figure 4, Timing Diagram

Over-Voltage and Surge Protection Load Switch

Detailed Functional Description

Device Operation

If the OCP9225 is enabled and the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after 13ms debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. The OVP switch features an ultra-low $18m\Omega$ (typ.) on-resistance MOSFET and protects low-voltage system against voltage faults up to 35VDC. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 50ns.

Surge Protection

The OCP9225 integrates a clamp circuit to suppress input surge voltage. For surge voltages between VIN_OVLO and VIN_CLAMP, the switch will be turned off but the clamp circuit will not work. For surge voltages greater than VIN_CLAMP, the internal clamp circuit will detect surge voltage level and discharge the surge energy to ground. The device can suppress surge voltages up to ±100V.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in about 50ns. The switch will remain off until VIN falls below the OVP falling trip level.

OVP Threshold Adjustment

If the default OVP threshold is used, OVLO pin must be grounded. If OVLO pin is not grounded, and by connecting external resistor divider to OVLO pin as shown in the typical application circuit, between IN and GND, the OVP threshold can be adjusted as following:

$$VIN_OVLO = VOVLO_TH \times (R1+R2)/R2$$

For example, if we select R1 = $510k\Omega$ and R2 = $51k\Omega$, then the new OVP threshold calculated from the above formula is 13.2V. The OVP threshold adjustment range is 4V to 20V. When the OVLO pin voltage VOVLO exceeds VOVLO_SEL (0.27V typical), VOVLO is compared with the reference voltage VOVLO_TH (1.2V typical) to judge whether input supply is over-voltage.

/ACOK Output

The device features an open-drain output /ACOK, it should be connected to the system I/O rail through a pull-up resistor. If the device is enabled and $V_{IN}_{UVLO} < V_{IN} < V_{IN}_{OVLO}$, /ACOK will be driven low indicating the switch is on with a good power input. If OVP, UVLO, or OT occurs, or EN is pulled high, the switch will be turned off and /ACOK will be pulled high.

USB On-The-Go (OTG) Operation

If $V_{IN} = 0V$ and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. It is recommended to pull Pin /EN low in OTG mode, When $V_{IN} > V_{IN_UVLO}$, internal charge pump begins to open the load switch after debounce time. After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

OCP9225

Over-Voltage and Surge Protection Load Switch

Ordering Information

Part Number	OVP Voltage	Marking	Package Type	Package Qty	Temperature	Eco Plan
OCP9225AWPAD	6.8V	VLB	WLCSP-12B	7-in reel 3000pcs/reel	-40∼85 ℃	Green
OCP9225BWPAD	10.2V	VMB	WLCSP-12B	7-in reel 3000pcs/reel	-40∼85 ℃	Green

Marking Information

LS <u>加瑞科技</u> ORIENT-CHIP

Over-Voltage and Surge Protection Load Switch

Package Information

WLCSP-12B:

Note: All dimensions are in millimeters.

0.0

OCP9225

Over-Voltage and Surge Protection Load Switch

B₀

 \oplus \oplus \oplus

 \oplus

Packing Information

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Package tape	Package Drawing	MSL	SPQ	Reel Diameter (inch)	Reel Width W1(mm)
12-Ball WLCSP (WLCSP-12B)	VLB/VMB	Level-1-260C	3000PCS	7	8.4
A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	PIN A1 Quadrant
1.4	2.2	0.77	4.0	8.0	Q2

0.

OCP9225

Over-Voltage and Surge Protection Load Switch

IMPORTANT NOTICE

Orient-Chip Semiconductor Co., Ltd (OCS) and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete .These separate provision won't be provided.

